Analyzing Music Using Group Theory

Rachel Wraley
Faculty Advisor: Dr. Wilson

Department of Mathematics Butler University

Senior Seminar, December 11, 2015

Outline

- Musical Background
 - Musical Notation and Vocabulary
 - Pitch and Pitch Class Theory
 - Intervals
- 2 Triads
 - Triadic Transformation Basics
 - Riemann's Tonnetz
 - Riemannian Transformations
 - Uniform Triadic Transformations
- Group Theory
 - Semi-Direct Products
 - Musical Group Theory

Music Background

Pitch and Pitch Class

- Pitch is how high or low a note is, or the higher the frequency of a given note the higher the pitch and so on.
 - In Music Theory the various different letter names (D, Ab) are called Pitch Classes.
 - For this talk we will use represent Pitch Classes using integers mod 12 with C=0.
- For example:

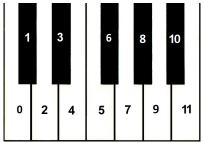
```
C \mapsto 0
C \not \mapsto 1
\vdots
B \mapsto 11
```

Musical Background

Intervals

Intervals

- The distances between two notes or pitches. This distance is measured by half steps.
- For example:
 The distance from C♯(1) up to E(4) is an interval of 3.
- The distance from any E(4) up to the next $C\sharp$ is 9.



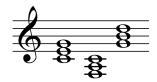
Triads Definition

- A Triad is a "collection" of three notes that has specific spacing depending on whether or not the triad is a Major or Minor triad.
- Triads are what make up the chords we are familiar with in music.

Triad Spacing

A Triad is a set of 3 notes (n_1 the root, n_2 the third, and n_3 the fifth) that can be arranged to make either a Major or Minor Triad.

- Major Triads are created when arranged notes satisfy the following criteria:
 - $n_2 n_1 = 4 \mod(12)$
 - $n_3 n_2 = 3 \mod(12)$
- Minor Triads are created when arranged notes satisfy the following criteria:
 - $n_2 n_1 = 3 \mod(12)$
 - $n_3 n_2 = 4 \mod(12)$



Basics of Triad Transformations

- Triads can be written as an element of $\Delta = (\sigma, r) \in \mathbb{Z}_2 \times \mathbb{Z}_{12}$ where $\sigma \in \{+, -\}$ is the sign that distinguishes between Major(+) and Minor(-) and r is the root of the triad, written as a integer mod 12.
- Triads can undergo transformations such as transpositions to make a new triad.

Definition

A Transformation T is a bijective function

$$T: \mathbb{Z}_2 \times \mathbb{Z}_{12} \to \mathbb{Z}_2 \times \mathbb{Z}_{12}$$

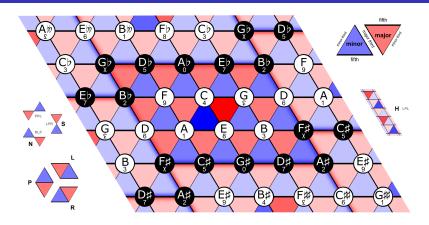
This means that $(\sigma, r) \mapsto (\sigma', r')$

Riemann's Tonnetz

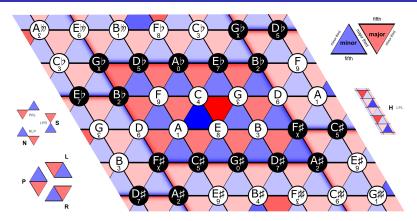
Tonnetz

- Tonnetz: A conceptual lattice diagram representing traditional harmonic relationships between Major and Minor triads and scales.
- Music Theorist Hugo Riemann (Not to be confused to Bernhard Riemann of Riemann Sums Fame) created the Tonnetz picture on which there is a group structure of transformations acting on triads.
- Fun Fact: This diagram was first described in works by Leonhard Euler.

Riemann's Tonnetz



Riemann's Tonnetz



There are three main Riemannian Transformations that are "displayed" on Riemann's Tonnentz. There are Parallel, Relative, and Leading Tone Exchange. They act on the triangles by reflecting triangles across a certain triangle edge.

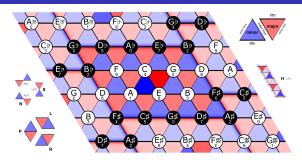
Riemannian Transformations

There are three main Riemannian Transformations that are "displayed" on Riemann's Tonnentz. There are Parallel, Relative, and Leading Tone Exchange.

- Parallel (P)
 - It takes a triad and changes its sign, called Mode Reversing.
 - ullet Therefore Major Triad \mapsto Minor triad and the reverse for Minor triads.
 - This is transformation reflects a triangle across the edge connecting the root and the fifth of a given triad.
- Relative (R)
 - It takes a Major(Minor) triad and finds its Relative Minor(Major) triad.
 - This is transformation reflects a triangle across the edge connecting the root and the third of a given triad.
- Leading Tone Exchange (L)
 - For a Major triad it moves the root down a semitone
 - For a Minor triad it moves the fifth up a semitone
 - This is transformation reflects a triangle across the edge connecting the third and the fifth of a given triad.

Riemannian Transformations

Examples



Example 1:

• R:
$$(9,-) \mapsto (0,+)$$

$$DMinor \mapsto (5,+)$$

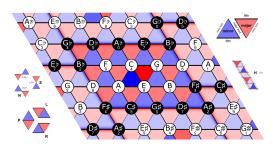
$$CMajor \mapsto (5,+)$$

$$CMajor \quad AMinor$$

$$(0,+) \mapsto (9,-)$$

Riemannian Transformations

Examples



Example 2:

• P:
$$(C,+) \mapsto (C,-)$$

 $(D,+) \mapsto (D,-)$
 $(D,-) \mapsto (D,+)$

Musical Groups

In fact, under R every triad gets transformed in this way:

The mode reverses with Major triads get transposed up by 9, and Minor triads get transposed up by 3.

We represent this by saying
$$R = \langle -, \underbrace{9}_{Major}, \underbrace{3}_{Minor} \rangle$$
.

Under P every triad gets transformed in this way:

The mode reverses with Major triads get transposed up by 0, and Minor triads get transposed up by 0.

We represent this by saying
$$P = \langle -, \underbrace{0}_{\textit{Major}}, \underbrace{0}_{\textit{Minor}} \rangle$$
.

Uniform Triadic Transformations

Uniform Triadic Transformations (UTTs) (J. Hook, 2002)

- A triadic transformation T: $\mathbb{Z}_2 \times \mathbb{Z}_{12} \to \mathbb{Z}_2 \times \mathbb{Z}_{12}$ is *uniform* if it transforms all Major Triads "the same way" and Minor Triads in "the same way".
- The Notation of a UTT:

 $\langle \sigma, t^+, t^- \rangle$ where $\sigma \in \{+, -\}$ indicates whether the mode changes under the transformation and t^+ and t^- give the transposition change for Major and Minor triads respectively.

Using the UTT notation, the definition works as follows: Given a Major Triad and a Mode Reversing UTT

- $\Delta = (+, r)$ and $T = \langle -, t^+, t^- \rangle$ $\Rightarrow T(\Delta) = T(+, r) = (-, r + t^+)$ Given a Minor Triad and a Mode Reversing UTT
- $\Delta = (-, r)$ and $T = \langle -, t^+, t^- \rangle$ $\Rightarrow T(\Delta) = T(-, r) = (+, r + t^-)$

Triadic Transformations

Riemannian Transformations

The UTT notation can now be used to represent the Riemannian Transformations P, R, and L as UTTs.

Triadic Transformations

Riemannian Transformations

The UTT notation can now be used to represent the Riemannian Transformations P, R, and L as UTTs.

- $P = \langle -, 0, 0 \rangle$
- $R = \langle -, 9, 3 \rangle$
- $L = \langle -, 4, 8 \rangle$

Triadic Transformations

Riemannian Transformations

The UTT notation can now be used to represent the Riemannian Transformations P, R, and L as UTTs.

- $\bullet \ \mathsf{P} = \langle -, 0, 0 \rangle$
- $R = \langle -, 9, 3 \rangle$
- $L = \langle -, 4, 8 \rangle$

With this notation we would begin to answer questions like: What happens if one were to conjugate $T=\langle +,t^+,t^-\rangle$ by $P=\langle -,0,0\rangle$?

Transformation Groups

There are specific Musical Groups that Music Theorists use to analyze musical pieces.

Transformation Groups

There are specific Musical Groups that Music Theorists use to analyze musical pieces.

Definition: Group of UTTs

$$\mathcal{U} = \{ \langle \sigma, t^+, t^- \rangle \mid \sigma \in \{+, -\}, t^+, t^- \in \mathbb{Z}_{12} \}$$

Transformation Groups

There are specific Musical Groups that Music Theorists use to analyze musical pieces.

Definition: Group of UTTs

$$\mathcal{U} = \{ \langle \sigma, t^+, t^- \rangle \mid \sigma \in \{+, -\}, t^+, t^- \in \mathbb{Z}_{12} \}$$

Definition

The Riemannian Group $\mathcal R$ is a group of functions generated by the Riemannian transformations P, R, and L. $\mathcal R\subseteq\mathcal U$

Transformation Groups

There are specific Musical Groups that Music Theorists use to analyze musical pieces.

Definition: Group of UTTs

$$\mathcal{U} = \{ \langle \sigma, t^+, t^- \rangle \mid \sigma \in \{+, -\}, t^+, t^- \in \mathbb{Z}_{12} \}$$

Definition

The Riemannian Group $\mathcal R$ is a group of functions generated by the Riemannian transformations P, R, and L. $\mathcal R\subseteq\mathcal U$

Mini-Theorem

$$\mathcal{R} = \{ \langle \pm, n, 12 - n \rangle \mid n \in \mathbb{Z}_{12} \}$$

Transformation Groups

There are specific Musical Groups that Music Theorists use to analyze musical pieces.

Definition: Group of UTTs

$$\mathcal{U} = \{ \langle \sigma, t^+, t^- \rangle \mid \sigma \in \{+, -\}, t^+, t^- \in \mathbb{Z}_{12} \}$$

Definition

The Riemannian Group $\mathcal R$ is a group of functions generated by the Riemannian transformations P, R, and L. $\mathcal R\subseteq\mathcal U$

Mini-Theorem

$$\mathcal{R} = \{ \langle \pm, n, 12 - n \rangle \mid n \in \mathbb{Z}_{12} \}$$

Q: How does \mathcal{U} relate to $\mathcal{R} = \{\langle -, t, 12 - t \rangle\}$ and to other subgroups of transformations?

Group Theory

Semi-Direct Products

Definition: Semi-Direct Product

Given a group homomorphism

$$\varphi \colon \mathcal{K} \mapsto Aut(\mathcal{H})$$

$$k \mapsto [\varphi_k : \mathcal{H} \to \mathcal{H}],$$

defines the group $\mathcal{H} \rtimes \mathcal{K} = \{(h, k) | h \in \mathcal{H}, k \in \mathcal{K}\}$

with the rule $(h_1, k_1)(h_2, k_2) = (h_1 \cdot \varphi_{k_1}(h_2), k_1 k_2)$.

UTT Examples

What happens if one were to Conjugate $\langle +, t^+, t^- \rangle$ by $P = \langle -, 0, 0 \rangle$?

UTT Examples

What happens if one were to Conjugate
$$(+, t^+, t^-)$$
 by $P = \langle -, 0, 0 \rangle$? If $\Delta = (+, r)$: $(\langle -, 0, 0 \rangle \cdot \langle +, t^+, t^- \rangle \cdot \langle -, 0, 0 \rangle (\Delta)$ $(P \cdot \langle +, t^+, t^- \rangle \cdot P) \underbrace{(+, r)}_{\Delta}$ $= P \langle +, t^+, t^- \rangle (-, r)$ $= P(-, r + t^-)$ $= (+, r + t^-)$

Musical Groups

Similarly for
$$\Delta = (-, r)$$
.
 $(P \cdot \langle +, t^+, t^- \rangle \cdot P)(-, r) = (-, r + t^+)$

Musical Groups

Similarly for $\Delta = (-, r)$. $(P \cdot \langle +, t^+, t^- \rangle \cdot P)(-, r) = (-, r + t^+)$ Major triads now get transposed by t^- and Minor triads by t^+ . $\therefore P \langle +, t^+, t^- \rangle P = \langle +, \underbrace{t^-}_{Major}, \underbrace{t^+}_{Minor} \rangle$. Conjugation of $\langle +, t^+, t^- \rangle$ by P is the same as **swapping** $\langle t^+, t^- \rangle$ for $\langle t^-, t^+ \rangle \in \mathbb{Z}_{12} \times \mathbb{Z}_{12}$.

Group Theory

Musical Group Theory

```
Important fact: The Map \mathbb{Z}_2 \to Aut(\mathbb{Z}_{12} \times \mathbb{Z}_{12}) 0 (i.e "+") \mapsto [Id: (\mathbb{Z}_{12} \times \mathbb{Z}_{12}) \to (\mathbb{Z}_{12} \times \mathbb{Z}_{12})] 1 (i.e. "-") \mapsto [Swap: (h_1, h_2) \mapsto (h_2, h_1)], is a homomorphism, so We can construct (\mathbb{Z}_{12} \times \mathbb{Z}_{12}) \rtimes \mathbb{Z}_2.
```

Group Theory

Musical Group Theory

Important fact: The Map $\mathbb{Z}_2 \to Aut(\mathbb{Z}_{12} \times \mathbb{Z}_{12})$ 0 (i.e "+") \mapsto [$Id: (\mathbb{Z}_{12} \times \mathbb{Z}_{12}) \to (\mathbb{Z}_{12} \times \mathbb{Z}_{12})$] 1 (i.e. "-") \mapsto [$Swap: (h_1, h_2) \mapsto (h_2, h_1)$], is a homomorphism, so We can construct $(\mathbb{Z}_{12} \times \mathbb{Z}_{12}) \rtimes \mathbb{Z}_2$.

Theorem (J. Hook):

$$\mathcal{U} = (\mathbb{Z}_{12} \times \mathbb{Z}_{12}) \rtimes \underbrace{\mathbb{Z}_2}_{\langle P \rangle}$$

Musical Group Theory

Another Decomposition of \mathcal{U} .

Let $\mathcal{B}=\{\langle +,0,t^-\rangle\mid t^-\in\mathbb{Z}_{12}\}$ be the group of Transpositions of only the Minor chords

So $\mathcal{B} \subseteq \mathcal{U}$.

Musical Group Theory

Another Decomposition of \mathcal{U} .

Let $\mathcal{B}=\{\langle +,0,t^-\rangle\mid t^-\in\mathbb{Z}_{12}\}$ be the group of Transpositions of only the Minor chords So $\mathcal{B}\subseteq\mathcal{U}$.

Theorem (J. Hook)

 $\mathcal{U}{=}\mathcal{R}\rtimes\mathcal{B}$

Group Theory Main Idea of Proof

For Groups $\mathcal{U}, \mathcal{R}, \mathcal{B}$.

We can show $\mathcal{U}=\mathcal{R}\times\mathcal{B}$ as a set and \mathcal{R} is normal in \mathcal{U} so

(1) We have the following Map:

$$\mathcal{B} o \mathsf{Aut}(\mathcal{R})$$

 $b\mapsto$ (conjugation by b) =[$\varphi_b:r\mapsto brb^{-1}\in\mathcal{R}\ (\varphi_b\in Aut(\mathcal{R})\ because\ \mathcal{R}\lhd\mathcal{U}.$

(2) Then
$$\underbrace{r_1b_1}_{(r_1,b_1)} \cdot \underbrace{r_2b_2}_{(r_2,b_2)} = (r_1b_1r_2 \cdot \underbrace{(b_1^{-1}b_1)}_{1})b_2 = \underbrace{r_1(b_1r_2b_1^{-1})}_{(r_1\varphi_{b_1}(r_2), b_1b_2)}\underbrace{b_1b_2}_{b_1b_2}$$

Musical Group Theory

What it is Important

Why is all this information important?

Musical Group Theory

What it is Important

Why is all this information important?

- It is used by Music Theorists to analyze different pieces of music ranging from Mozart to modern tonal music.
- It also gives a language for analyzing how composers exploit relationships between keys and the interaction between them.

The End

Thank you.

Bibliography

Hook, Julian. Uniform Triadic Transformations. Journal of Music Theory 46.1/2 (2002): 57126. Web.