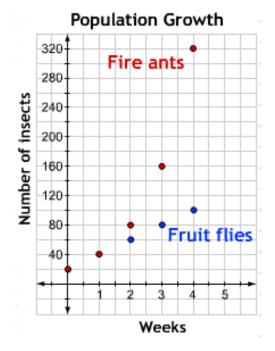
1. Jacob has \$50 and wants to save \$30 per week. Complete the table and write a function rule to model Jacob's savings.

Х	у
0	30

2. Complete the missing boxes in the table. Write a function rule to model the data.

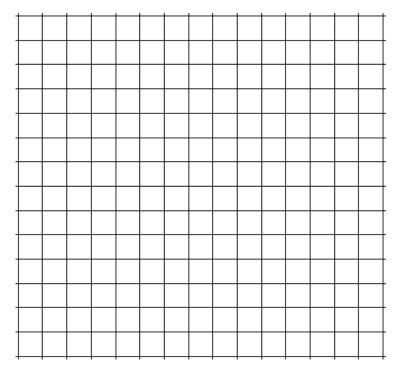

Х	0	1	2	3	4	5
У	5	15	45			

3. Simplify $(x^3y^5)^3(xy^{-2})$.

Student:	Class:	Date:

Student Activity Sheet 2; use with Exploring "Comparing exponential and linear growth"

- 8. **REINFORCE** Assume the growth rates for the two populations remain the same as they were in Barry's and Red's original experiment.
 - a. How would the graph of the population of fruit flies change if there were only 10 fruit flies at the beginning of the experiment?

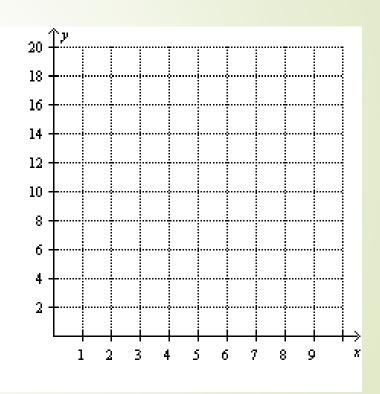

- b. How would the graph of the population of fire ants change if there were only 10 fire ants at the beginning of the experiment?
- 9. **REINFORCE** A certain bacteria population triples each minute. Suppose you begin with a single bacterium.
 - a. Make a table of values to show the population of bacteria at the end of each minute for the first 5 minutes of growth.

Number of minutes	Number of bacteria
0	1

Student: Class: Date:	:
-----------------------	---

Student Activity Sheet 2; use with Exploring "Comparing exponential and linear growth"

b. Graph the data from your table.



- c. Write a function rule that relates the number of minutes that have passed, m, to the number of bacteria in the population, b(m).
- 10. **REINFORCE** Now consider another bacteria population. The number of these bacteria present after each hour is represented by the function rule $g(h) = 500 \cdot 4^h$, where g represents the number of bacteria present after h hours.
 - a. How many bacteria were there initially? How do you know?
 - b. How are the bacteria growing each hour? How do you know?

Complete the table and graph each function below.

Х	y=3x+2

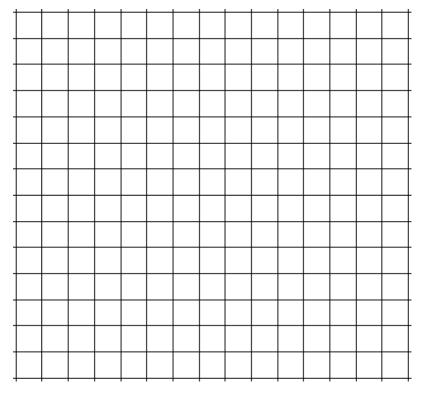
X	$y=2(3)^x$

Explain the differences in the rates of change of each function.

Student:			Class:	Date:	
_	 	-			

Student Activity Sheet 3; use with Exploring "Growth and decay"

1. Each time you fold a piece of paper, the number of layers of paper changes. Complete the table to show the number of layers for each fold.


Number of folds	Process	Number of layers of paper
0		
1		
2		
3		
4		
5		
6		

2. As the number of folds increases, what pattern do you notice in the number of layers of paper?

3. Write a function rule that represents the number of layers of paper, p(n), as a function of the number of paper folds, n.

Student Activity Sheet 3; use with Exploring "Growth and decay"

4. Draw a scatterplot of the paper folding experiment.

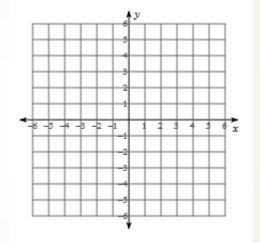
5. Using the function rule you wrote for question 3, calculate how many layers a paper would have if you folded the paper 18 times.

6. How many folds would create 1024 layers of paper? Use your function rule and guess and check to find the answer.

Student:	Class:	Date:	
Exponential functions ar	nd equations		

7. Complete the table to show the relationship between the number of folds in a sheet of paper and the area of the top layer.

Student Activity Sheet 3; use with Exploring "Growth and decay"


Number of folds	Process	Area of top layer (sq. in.)
0		
1		
2		
3		
4		

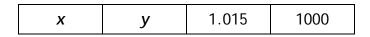
8. Write a function rule to show the relationship between the area of the top layer, a, and the number of times the paper is folded, n.

9. Use your function rule to find the area of the top layer when there are 10 folds.

- 1. Your math teacher tells you that next week's test is worth 100 points and has 38 questions. Each problem is worth 5-points or 2-points. How many of each value are there?
- 2. Graph the following system:

$$\begin{cases} -3x + 2y > -6\\ y \le -2x + 5 \end{cases}$$

- 3. Write the following numbers in scientific notation.
 - a. 10,598,700
 - b. 0.005409


Student:	Class:	Date:

Student Activity Sheet 4; use with Exploring "Modeling exponential growth"

1. In 2008, Smart High School had 1000 students. The student population has grown by 1.5% every year since. And the school district administration predicts the same growth will continue until at least 2028. Model Smart High School's current and predicted population growth in a table. Let 0 represent the year 2008. Complete the table.

Year	Number of years since 2008	Process	Predicted enrollment
2008	0	1000	1000
2009	1	1.015 • 1000	1015
2010	2	1.015 • (1.015 • 1000) = 1.015 ² • 1000	1030
2011	3		
2012			
2013			
2018			
2028			

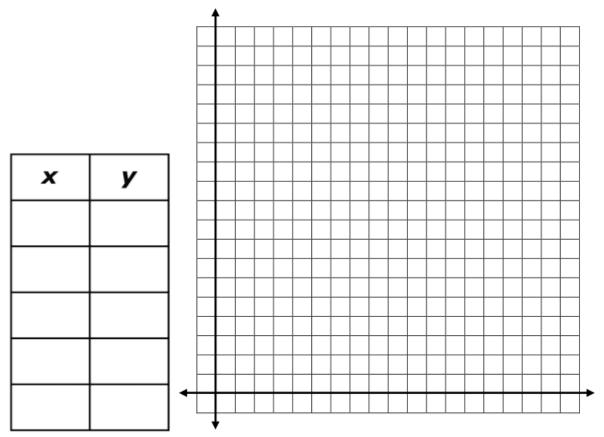
2. Let *y* represent the number of students in the school. Complete the puzzle to create a function rule that describes the enrollment at Smart High School.

Name:			
	Period:	Date:	

Modeling Exponential Growth

For each exponential story problem do the following:

- Writing a function rule
- Creating a table of values
- Graphing the data
- State whether the graph shows growth or decay
- Answerthe accompanying questions

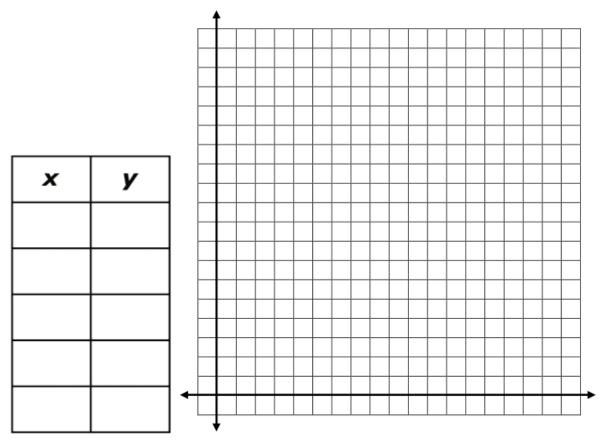

Verbal Direction given to students through the class.

Each group is given a specific problem. Group 1 is problem 1, Group 2 is problem 2, Group 3 is problem 3, Group 4 is problem 4, and we will all do problem 5 together toward the end of class. Right now you all will have 10 minutes to complete their assigned problem, and become experts in their problem. After the ten minutes you will all have 1 minute to ask any clarifying questions to your group members.

At the beginning of class you drew a penny, nickel, dime, quarter, or dollar bill. After your clarifying questions minute, you will move to a different part of the room with your coin group. This new group will be made up of people from different groups, and therefore they all have different problems solved. You will have 10 minutes to complete problems 1-4 using your experts from each older group. Each member of the new group will teach their problem to their new group members. After the 10 minutes I will offer you more time if necessary. After everyone has finished the packet, we will come back together as a group and complete problem 5 together.

1. Zombie Apocalypse

A virus is turning people in Zombies! When the virus started spreading there was only one Zombie and the number of Zombies quadruples every week.

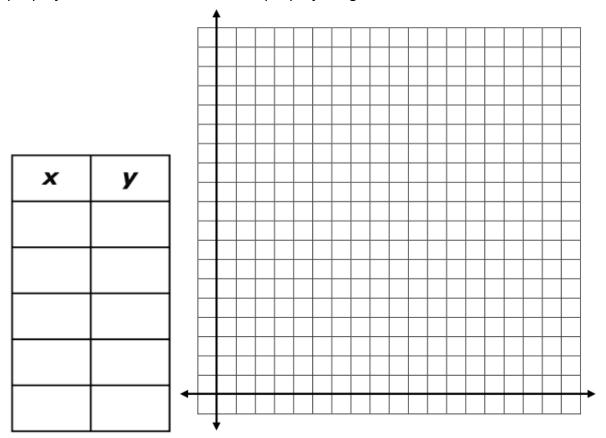


Question 1. How many Zombies will there be after 15 weeks?

Question 2. When there are 1,000,000 people who have turned into Zombies the World Health Organization (WHO) will call the virus a pandemic. After how many weeks will there be a pandemic?

2. Eagle Creek

At Eagle Creek Park there is a population of deer. When the deer first moved into Eagle Creek there were 4 deer and the number of deer doubles each month.

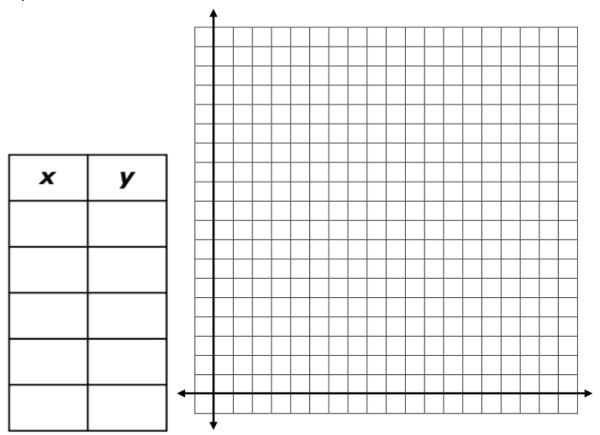

Function rule: _____

Question 1. How many deer will there be after 10 months?

Question 2. When there are more than 10,000 deer Eagle Creek will have to move the deer to other parks in the state. After how many months will deer have to be moved?

3. Guitar Club Membership

Mrs. Petrin is the sponsor for Guitar Club at Pike. During the first week of school she had 2 people join Guitar Club. The number of people joining Guitar Club doubles each week.



Question 1. How many students are in Guitar Club after 4 weeks?

Question 2. Once Mrs. Petrin has more than 30 students join Guitar Club she has to get a bigger room for Guitar Club. After how many weeks will Mrs. Petrin have to get a bigger room?

4. Sick Day

Ms. Wraley came to Pike sick one day and got 3 students sick. The next day the sick students came to school and got other people sick. The number of students who get sick triples every day.

Question 1. How many students will be sick after 6 days?

Question 2. After half of the students at Pike (1,630 students) are sick, Mr. Inman has to cancel school. After how many days will school have to be cancelled?

- 1) Austin is working on some research involving cells. He has observed that every 5 hours the cells quadruple. He started with 23 cells.
 - a) State a function rule that describes this situation.
 - b) How many cells will he have in 22 hours?
- 2) Write the function rule for each of the tables below.

Х	f(x)
0	4
1	8
2	12
3	16

Х	f(x)
0	4
1	8
2	16
3	32

Name:		Period:	Date:
Topic 1	15 HW#5 – More Modeling Practice		
1.	An initial population of 750 endangered turtles for the population and find the population after 5		ear for 5 years. Write a rule
	Function Rule:		
	Population after 5 years:		
2.	The population of Baconburg starts off at 20,000 exponential growth model and find the population		
	Function Rule:		
	Population after 5 years:		
3.	The population of Henderson City was 3,381,000 of 1.8%. what will the approximate population of	•	0 0
	Function Rule:		
	Population in 2016 (standard notation):		
	Population in 2016 (scientific notation):		
4.	Write a function rule for the table. Create a scena the data represents.	ario to show y	our understanding of what
	X		y
	0		1
	1		4
	3		16 64
	4		256
	•		
	a. Function Rule:		
	b. Your Scenario:		
	·		·····

5. Write a function rule for the table. Create a scenario to show your understanding of what the data represents.

x	y
0	6
1	12
2	24
3	38
4	96

		4	96
	a.	Function Rule:	_
	b.	Your Scenario:	
6.		nny has 2 more quarters than dimes. He h 80. How many quarters and dimes does Jo	
	Eq	uation 1:	Equation 2:
	Nu	mber of Quarters:	Number of Dimes:
7.	blu		ants to buy blue fish and striped fish. The 18. The aquarium can hold 10 fish, and he
	эр	ent 3171. How many of each type of fish	did Addin bdy:
	Eq	uation 1:	Equation 2:
	Nu	mber of blue fish:	Number of striped fish:

Name:	Period:	Date:	

Topic 15 Exponential Functions & Equations Test Review

	Linear Function	Exponential Function
General Form	f(x) = mx + b	$f(x)=a\cdot b^x$
	Starting value: Rate of change:	Starting value: Constant Multiplier:

1) Suppose the population of particular bacteria doubles every 2 hours. Write a function rule for the situation if there are 52 bacteria present in the culture. How many bacteria will there be after 4 hours?

Function rule: _____

Amount present after 4 hrs: _____

x	1	2	3	4	5
f(x)	3	9	27	81	243

x	0	1	2	3	4
g(x)	5	15	45	135	405

x	1	2	3	4	5
f(x)	-2	-6	-18	-54	-162

The num	g(x)	-3				
The num	g(x)	10	-2 15	<u>-1</u>	0	1
The num		10	15	25	20	15
The num						
The num						
···c ···a···	ber of fire ants tri	inles every 5 hou	irs and there are	currently 60 fire	ants	
		ipies every 5 mee	ins and there are	carrently come	411631	
a.	Function Rule:_					
u.	ranction raic					
h	. How many fire	ants will there h	a in 24 hours?			
D.	. How many me	ants will there b	e III 24 110urs:			
You wen	t to a Taylor Swift	concert and had	l her sign vour tie	ket. Now the ti	cket is worth \$16	0 on eBay. If the
	· ·					o on eday. If the
value of	the ticket increase	es 14% each yeai	r, then what will	the value be afte	er 6 years?	
Supposed	vou deposit \$3.00	00 in an account	paving 4.5 % int	erest each vear.	Write an expone	ntial function mo
	you deposit \$3,00		· · ·	-	Write an expone	ntial function mo
	you deposit \$3,00 se used to determ		· · ·	-	Write an expone	ntial function mo
	e used to determ	ine the amount i	in the account af	ter t years.	Write an expone	ntial function mo
	e used to determ	ine the amount i	· · ·	ter t years.	Write an expone	ntial function mo
	e used to determ	ine the amount i	in the account af	ter t years.	Write an expone —	ntial function mo
	e used to determ	ine the amount i	in the account af	ter t years.	Write an expone _	ntial function mo
that can b	e used to determ	ine the amount in Model:	in the account af	ter t years.	_	ntial function mo
hat can b	e used to determ Function	ine the amount in Model:	in the account af	ter t years.	_	ntial function mo
that can b	e used to determ Function	ine the amount in Model:	in the account af	ter t years.	_	ntial function mo
that can b	e used to determ Function	ine the amount in Model:	in the account af	ter t years.	_	ntial function mo
hat can b	e used to determ Function se this model to d	ine the amount in Model:	In the account af	ter t years. unt after 10 yea	rs.	
hat can b	e used to determ Function	ine the amount in Model:	In the account af	ter t years. unt after 10 yea	rs.	
Now us	Function se this model to d	ine the amount in Model: determine the base has 1200 term	In the account af	ter t years. unt after 10 yea	rs. a rate of 2.4% pe	er day.
Now usine founda	Function se this model to determine to determine to show how	ine the amount in Model: determine the base has 1200 term withe termites as	In the account af	ter t years. unt after 10 yea	 rs. a rate of 2.4% pe	er day.
Now us	e used to determ Function se this model to d	ine the amount in Model: determine the base has 1200 term withe termites as	In the account af	ter t years. unt after 10 yea	 rs. a rate of 2.4% pe	er day.